
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 12 – December 4, 2024

Ordinary differential equations

Exercise I (MATLAB)

Consider the Cauchy problem

find y : I ⊂ R → R :

{
y′(t) = f(t, y(t)) for all t ∈ I,
y(t0) = y0,

(1)

where I = (t0, tf) is the integration interval, f : I × R → R is a given continuous function, and
y0 ∈ R is the initial datum.
As a particular case of (1), the following model problem can be defined by setting f(t, y) = λ y for
some λ ∈ R:

find y : I ⊂ R → R :

{
y′(t) = λ y(t) for all t ∈ I,
y(t0) = y0.

(2)

The exact solution of the model problem is y(t) = y0 e
λ (t−t0), for all t ∈ (t0,+∞).

a) Write the MATLAB functions forward euler.m and heun.m that implement the forward
Euler and Heun methods for the solution of (1). The functions should output the vector of
discrete times {tn}Nh

n=0 (tn = t0 + nh for n = 0, . . . , Nh) and the numerical solution {un}Nh
n=0.

Use the function forward euler template.m as template.

�
function [tv, uv] = forward euler(fun, y0, t0, tf, Nh)
% FORWARD EULER Forward Euler method for the scalar ODE in the form
% y'(t) = f(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% [tv, uv] = forward euler(fun, y0, t0, tf, Nh)
% Inputs: fun = function handle for f(t,y), fun = @(t,y) ...
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))

1

% uv = vector of approximate solution at times tv
%

return� �
b) Use the functions forward euler.m and heun.m to solve (1) for f(t, y) = 1 − y2, t0 = 0,

tf = 5, and y0 = e−1
e+1 . Set Nh = 10 and compare the numerical solutions with the exact

solution y(t) = e2t+1−1
e2t+1+1

.

c) Repeat point b) for the model problem (2), with λ = −0.5, t0 = 0, tf = 15, y0 = 1, and
Nh = 10.

d) Write the functions backward euler modelproblem.m and crank nicolson modelproblem.m
that implement the backward Euler and Crank-Nicolson methods for the solution of (2). Use
the function backward euler modelproblem template.m as template.

�
function [tv, uv] = backward euler modelproblem(lambda, y0, t0, tf, Nh)
% BACKWARD EULER MODELPROBLEM Backward Euler method for the model problem
% ODE in the form
% y'(t) = lambda y(t), t \in (t0,tf)
% y(0) = y 0
%
% [tv, uv] = backward euler modelproblem(lambda, y0, t0, tf, Nh)
% Inputs: lambda = real parameter (negative)
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

return� �
e) Repeat point c) using backward euler modelproblem.m and crank nicolson modelproblem.m.

f) Consider the setting of points c) and e). Compute the errors eFE
n =

∣∣y(tn)− uFE
n

∣∣, eBE
n =∣∣y(tn)− uBE

n

∣∣, eHn =
∣∣y(tn)− uHn

∣∣, and eCN
n =

∣∣y(tn)− uCN
n

∣∣ corresponding to the forward
Euler, backward Euler, Heun, and Crank-Nicolson solutions. Select n such that the computed
errors correspond to the time t = 10 for increasing values of the number of subintervals
Nh = 15, 30, 60, 120, 240, 480. Plot the computed errors vs the size h of the subintervals.
Deduce the convergence orders of the methods.

g) Repeat points c) and e) by setting tf = 40 and Nh = 9, 10, and 11. Discuss the results in
terms of absolute stability of the numerical methods.

Exercise II (MATLAB)

Consider the Cauchy problem (1) introduced in Exercise 1. We assume that ∂f
∂y (t, y) exists for all

t ∈ I and for all y.

2

a) Write the MATLAB function backward euler.m that implements the backward Euler method
for the solution of (1). At each iteration, use the Newton method to solve for the next time
step. To this aim, use the function newton.m from Series 3, with tolerance tol = 10−10 and
maximum number of iterations equal to 20. Use the function backward euler template.m
as template.

�
function [tv, uv] = backward euler(fun, dfun y, y0, t0, tf, Nh)
% BACKWARD EULER Backward Euler method for the scalar ODE in the form
% y'(t) = f(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% The Newton method is used to solve the nonlinear equation at each time
% step. The function newton.m is used.
%
% [tv, uv] = backward euler(fun, dfun y, y0, t0, tf, Nh)
% Inputs: fun = function handle for f(t,y), fun = @(t,y) ...
% dfun y = derivative of f(t,y) w.r.t. y, dfun y = @(t,y) ...
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

return� �
b) Set f(t, y) = αy

(
1− y

β

)
, with α, β > 0 and 0 < y0 < β. The corresponding exact solution is

y(t) = β eα(t−t0)+γ

1+eα(t−t0)+γ , with γ := log
(

y0
β−y0

)
. Set α = π

2 , β = π
3 , y0 = 0.4, t0 = 0, tf = 20, and

Nh = 20. Apply forward euler.m and backward euler.m to approximate the solution
of the Cauchy problem. Compare the results with the exact solution y(t).

c) Consider the Cauchy problem defined at point b). Recall the heuristic stability condition given
in Remark 8.14 of the lecture notes for the forward Euler method: if f is smooth enough,
∂f
∂y (t, y(t)) < 0 for all t > t0, and

0 < h <
2

supt>t0

∣∣∣∂f∂y (t, y(t))∣∣∣ ,
then we can expect the forward Euler method to be absolutely stable. (This is not a rigorous
implication.) Using this criterion, find the maximum size hmax of the subintervals that ensures,
for h < hmax, absolute stability of the forward Euler method. Calculate the corresponding
number of subintervals Nhmax . (Hint : note that the solution y(t) satisfies y(t) ∈ [y0, β) for all
t ≥ t0.)

d) Solve the Cauchy problem from point b) by means of the forward and backward Euler methods
for different values of h around hmax. Compare the numerical solutions with the exact one.

3

